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Abstract— The Present Paper Provides Solutions of E-C Field equations for static cylindrically symmetric perfect fluid by choosing a 

suitable equations of state and by using a specific form for one of the metric potentials we have assumed. The spins of all the indivi dual 

particles composing the fluid to be aligned along the symmetry axis. The constants appearing in the solution have been found by using 

boundary condiyions, pressure, and density have been also found for the distribution such type of investigation is very usefu l for 
developments in relativistic astrophysics. 

Index Terms— Perfect fluid, Metric potential, Spin, Pressure, and Density. 

I. INTRODUCTION 

The modified version of Einstein’s theory of Gravitation, called 

Einstein-Cartan theory has been extensively studied by Hehl et al [1] 

Prasanna [7] has considered a study of static fluid sphere in E-C 

theory as an attempt to investigate whether Einstein-Cartan theory 

admits self-gravitating fluid systems .static fluid sphere in E-C 

Theory has been also studied by Kerlick [4], Kuchowicz [5] Skinner 

and Webb [10] Sah and Chandra [11] and Singh and Yadav [9] 

whereas Yadav et.al.[12] have studied non –static perfect fluid 

spheres with conformal flatness and also static fluid sphere of charge 

and uncharged cases. 

However in spherical symmetry it is assumed that spins are 

aligned in radial direction (implying the presence of magnetic 

monopole at the center), the p icture is not very physical. Further as 

a rotating system cannot be spherical, naturally it seems desirable to 

study axis symmetric distributions which are more physical keeping 

this fact in mind Prasanna [8] has considerd the simplest axis  

symmetric system namely a static cylinder of perfect fluid in 

Einstein-Cartan theory. 

Here in this paper we have also studied a static cylindrically  

symmetric perfect fluid with spin and have solved the field equations 

using a suitable equation of state viz. –ρ=apr and by choosing 

specific form for one of the metric potentials. We have assumed the 

spins of all the individual particles composing the fluid to aliged 

along the symmetry axis. The constants appearing in the solution 

have been found by boundry conditions pressure and density have 

also evaluated for the distribution. 

II. THE FIELD EQUATIONS  

We consider the static cylindrically symmetric metric given by  

(2.1)  ds2 = - 𝑒2𝛼−2𝛽(𝑑𝑟 2 + 𝑑𝑧 2) − 𝑟 2 𝑒−2𝛽 𝑑𝛷2 + 𝑒2𝛽𝑑𝑡 2 

Where α and β are functions of ‘r’ alone. 

Considering the perfect fluid material distribution with anistropic 

pressure the symmetric energy momentum tensor T-I
J is given by 

(2.2)  T-I
J = diag. {-pr, -pΦ, -pz, ρ} 

The Einstein –Cartan field equations are 

(2.3)  GI
J ≡ RI

J -
1

2
 RẟI

J = - Ktij, 

(2.4)  QI
JK - ẟI

J Q
l
lk   - ẟ

i
k Q

l
jl = -KSi

jk 

 

Where RIJ is Ricci Tensor, R is Scalar of curvature and tij is 

canonical asymmetric energy momentum tensor. 

The Canonical asymmetric energy momentum tensor is given by  

(2.5)  tij = T-i
j +  

1

2
 gim ΔKSk

jm 

The non-zero components of the Canonical tensor t i
j are 

(2.6)  t11 = T-1
1 = -Pr, t22 = T-2

2 = -Pφ, t33 = T-3
3 = - pz,  

t44 = T-4
4 =ρ, t42 =  

1

2
  K 𝑒𝛽−𝛼β1, t24 = 

1

2
 K 𝑒𝛽−𝛼β1 

Using equations (2.3) and (2.6) the field equations may be written 

as (Prasanna [7, 8]) 

(2.7)  K 𝑒2(𝛽−𝛼)(2β’’ –α’’+ 
2

𝛾
β’ –β’2) +   

1

4
 K2.K2 = - Kρ 

(2.8)  𝑒2(𝛽−𝛼) (β’2 - +  
𝛼′

𝛾
 ) - 

1

4
 K2. K2 = Kρr 

(2.9)  𝑒2(𝛽−𝛼) (- α11 -   β12) - 
1

4
 K2.K2 = KP φ 

(2.10  𝑒2(𝛽−𝛼) (- β12 +   
𝛼′

𝛾
 ) - 

1

4
 K2. K2 = KPZ

 

(2.11) 𝑒2(𝛽−𝛼) (K1 + Kα –Kβ1) = - K 𝑒(𝛽−𝛼) β1 9 

(2.12) 𝑒(𝛽−𝛼) (K1 + Kα1 –Kβ1) =   K 𝑒(𝛽−𝛼) β1 

Adding (2.11) and (2.12), we get 

(2.13)  K1 + K α1 = 0 which on integration gives 

(2.14) K = H 𝑒−𝛼 , Where H is an arbitrary constant to be 

determined. 

Following Hehl’s approach [2, 3] by redefining pressure and 

density as 

(2.15) P‾ = P - 2π k2, ρ‾ = ρ - 2π k2, 

The field equations finally reduce to 

(2.16) 8π ρ‾ = 𝑒2(𝛽−𝛼) (2β11 – α11 c - β12) 

(2.17) 8π P‾ r = - 8π P‾ z  = 𝑒2(𝛽−𝛼) ( 
𝛼′

𝛾
 - β12) 

(2.18) 8π P‾ φ = 𝑒2(𝛽−𝛼) (α11 + β12) 

Also the continuity equation becomes 

(2.19)  
𝑑 𝑃‾𝑟  

𝑑𝛾
 + (ρ‾ + P‾ r) β – (P‾ r  - P‾ φ ) (β

1 - 
1

𝛾
) – 2 P‾ r (β

1 - α1) = 0 
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III.  SOLUTION OF THE FIELD EQUATIONS  

We have only three independent equations to determine five 

unknowns. Thus the system is indeterminate for complete 

determinacy of the system we require two more conditions. for this 

we assume an equation of state of the form 

(3.1)   ρ‾= a P‾ r 

Where a is a constant. This gives us an additional equation. 

(3.2)  2 β11 + 2 
𝛽′

𝛾
  - (1-α) β’2 =  

𝑎𝛼′

𝛾
  + α11 

Since our set of equation is still incomplete, we will take a 

judicious choice of one of the metric potentials for this we choose 

(3.3)  β = B1 r
2 + B2 

Where B1 and B2   are constants with the value of ‘β’ equation (3.2) 

yields 

(3.4)  
𝑑2𝛼

𝑑𝑟2+ 
𝑎

𝑟
  

𝑑𝛼

𝑑𝑟
 = 8 B1 – 4 (1 – a)𝐵1

2 𝑟 2 

Its solution is given by 

(3.5)  α = C1 
𝑟1−𝑎

1−𝑎
 + 4B1

𝑟2

1+𝑎
- 1-a)  

𝑟4

(𝑎+3)
𝐵1

2 + C2 

Where C1 and C2 are constants of integration. 

We have now four arbitrary constants B1, B2, C1, and C2 which 

are to be determined by the boundary conditions. Assuming that the 

cylinder has a radius r = r0 we have for r > r0 (i.e. for outside the 

cylinder) the field equations, 

Rij = 0 

A well-known solution of Einstein equations for empty space 

with cylindrical symmetric is that given by Levicivita [6] which is 

given as 

(3.6) ds2 = - A2 r -2c( 1 - c ) (dr2  + dz2) – r2 (1 – c ). dφ2 + r2c dt2 

Where C and A being constants. 

We use Licknerowicz boundary conditions namely that the metric 

potentials are C ‘Continuous across the surface r = r0. Thus the 

continuity of α, α’, and β, β’ gives us 

(3.7)  B1 =  
𝐶

𝑟0
2 , B2 = C log𝑟0 -  

𝐶

2
 

C1 = 4C 
𝑟0

𝑎−1

(𝑎+1)(𝑎+3)
 [Ca + C – a – 3] 

C2 = log A + 𝐶2  log 𝑟0  + 
(1−𝑎)𝐶2

4( 𝑎+3)
 + 

2𝐶(4𝑎−2𝑎𝑐−2𝑎+3+𝑎2)

(1−𝑎)2(𝑎+3)
 

Thus we have for the interior of the cylinder the solution 

(3.8) 𝛼 =  
2𝐶∈2

(𝐶+3)(1+𝑎)
 [a + 3 + 2∈−(1+𝑎)

 ] -  
(1−𝑎)𝐶2(∈4−1)

(𝑎+3)(1−𝑎2)
 + log A 

+𝐶2 log 𝑟0 +
2𝐶(𝐶2+4𝐶−2𝑎𝐶−2𝑎+3)

(1−𝑎2) (𝑎+3)
 

(3.9)   𝛽=  
𝐶

2
 (∈2 + 2 log 𝑟0 – 1) 

Where ∈  =  
𝑟

𝑟0
 

Also pressure and density are given by  

(3.10) 8πρ = 16 𝜋2𝐺2𝑒−2𝛼  + 4 a C X [ 
1

1+ 𝑎
−

𝐶𝑟2

𝑎+3
 +

∈−(1+𝑎)(𝑎𝐶 +𝐶− 𝑎− 3)

(1+𝑎) (𝑎+3)
 ] 

(3.11) 8π𝑃𝑟 = 16 𝜋2𝐺2𝑒−2𝛼  + X [
4𝑎

1+ 𝑎
+ 

4𝑎(1−𝑎)∈−(1+𝑎)

(𝑎+3)( 1+𝑎)
− 

(1 −𝑎) 𝐶2 ∈2

(𝑎+3)
 + 𝐶2 ∈2] 

(3.12) 8π 𝑃𝑧  = 16 𝜋2𝐺2𝑒− 2𝛼  - X [
4𝑎

1+𝑎
+ 

4𝑎(1 −𝑎)∈−(1+𝑎)

(𝑎+3)(1+ 𝑎)
−  

(1− 𝑎) 𝐶2∈2

(𝑎+3)
 +

𝐶2 ∈2] 

(3.13) 8π 𝑃𝛷  = 16 𝜋2𝐺2𝑒−2𝛼  - X [
4𝑎(𝑎𝐶 +𝐶−𝑎−3)

(𝑎+1)(𝑎+ 3)
∈−(1 +𝑎) −

4

1+𝑎
+

 
3 (1−𝑎) 𝐶𝑟2

𝑎 +3
− 𝐶2 ∈2] 

Where X = 
(𝛽−𝛼)𝑒2

𝑟0
2  

IV.  DISCUSSION / CONCLUSION 

In General Relativity as given by Einstein there is no way of 

considering the spin effects on the geometry of space time. Further 

since a rotating system cannot be spherical. It is necessary to 

consider axi-symmetric distributions which are more physical. As 

such we have cons, idered the simplest axi–symmetric system 

namely cylindrically symmetric perfect fluid composed of particles 

having their spins aligned along the symmetry axis .To solve the 

field equations, we have used a suitable equation of state namely  

ρ=ap r and a judicious choice of one of the metric potentials. Further 

studies with rotating fluid distribution might give us more 

interesting aspects regarding the effects of the spin density. 
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